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Abstract

The large deviations analysis of solutions to stochastic differential equations and related pro-
cesses is often based on approximation. The construction and justification of the approximations
can be onerous, especially in the case where the process state is infinite dimensional. In this
paper we show how such approximations can be avoided for a variety of infinite dimensional
models driven by some form of Brownian noise. The approach is based on a variational repre-
sentation for functionals of Brownian motion. Proofs of large deviations properties are reduced
to demonstrating basic qualitative properties (existence, uniqueness, and tightness) of certain
perturbations of the original process.

1 Introduction

Small noise large deviations theory for stochastic differential equations (SDE) has a long history.
The finite dimensional setting, i.e., where the SDE is driven by finitely many Brownian motions,
was first studied by Freidlin and Wentzell [14]. In its basic form, one considers a k–dimensional
SDE of the form

dX ε(t) = b
(
X ε(t)

)
dt+

√
εa
(
X ε(t)

)
dW (t), X ε(0) = xε, t ∈ [0, T ], (1.1)

with coefficients a, b satisfying suitable regularity properties and W a finite dimensional standard
Brownian motion. If xε → x0 as ε → 0, then X ε P→ X0 in C([0, T ] : Rk), where X0 solves the
equation ẋ = b(x) with initial data x0. Freidlin-Wentzell theory describes the path asymptotics,
as ε → 0, of probabilities of large deviations of the solution of the SDE from X0–the law of large
number dynamics. Since the original work of Freidlin-Wentzell, the finite dimensional problem has
been extensively studied and many of the original assumptions made in [14] have been significantly
relaxed (cf. [2, 9]).
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Our interest in this work is with infinite dimensional models, i.e., the setting where the driving
Brownian motion W is “infinite dimensional.” In recent years there has been lot of interest in large
deviations analysis for such SDEs, and a partial list of references is [13, 10, 17, 31, 26, 7, 23, 30,
20, 3, 5, 6]. Our approach to the large deviation analysis, which is based on certain variational
representations for infinite dimensional Brownian motions [4], is very different from that taken in
these papers. The goal of the present work is to show how the variational representations can be
easily applied to prove large deviation properties for diverse families of infinite dimensional models.
Of course, the claim that a certain approach is easy to use may be viewed as subjective, and such
a claim is only truly validated when other researchers find the approach convenient. In this regard,
it is worth noting that the recent works [24, 25, 28, 27] have proved large deviation properties by
applying the general large deviation principle (LDP) for Polish space valued measurable functionals
of a Hilbert space valued Brownian motion established in [4] (see Section 6 for details).

As noted previously, one contribution of the present paper is to demonstrate in the context of
an interesting example how easy it is to verify the main assumption for the LDP made in [4]. A
second contribution is to show how the setup of [4], which considered SDEs driven by a Hilbert space
valued Wiener processes, can be generalized to closely related settings, such as equations driven
by a Brownian sheet. The chosen application is to a class of reaction-diffusion stochastic partial
differential equations (SPDE) [see (5.1)], for which well-posedness has been studied in [21] and a
small noise LDP established in [20]. The class includes, as a special case, the reaction-diffusion
SPDEs considered in [26] (See Remark 5.6).

Our proof of the LDP proceeds by verification of the condition analogous to Assumption 4.3 of
[4] (Assumption 4.5 in the current paper) appropriate to this formulation. The key ingredient in the
verification of this assumption are the well-posedness and compactness for sequences of controlled
versions of the original SPDE–see Theorems 5.7, 5.8 and 5.9. For comparison, the statements
analogous to Theorems 5.7, 5.8 in the finite dimensional setting (1.1) would say that for any
θ ∈ [0, 1) and any L2–bounded control u, (i.e. a predictable process satisfying

∫ T
0 ||u(s)||2ds ≤M ,

a.s. for some M ∈ (0,∞)), and any initial condition x ∈ R
k, the equation

dXθ,u
x (t) = b

(
Xθ,u

x (t)
)
dt+ θa

(
Xθ,u

x (t)
)
dW (t) + a

(
Xθ,u

x (t)
)
u(t)dt, Xθ,u

x (0) = x (1.2)

has a unique solution for t ∈ [0, T ]. Also, the statement analogous to Theorem 5.9 in the finite
dimensional setting would require that if θ(ε) → θ(0) = 0, if a sequence of uniformly L2–bounded
controls uε satisfies uε → u in distribution (with the weak topology on the bounded L2 ball), and
if xθ(ε) → x (all as ε→ 0), then Xθ(ε),uε

xθ(ε) → X0,u
x in distribution.

As one may expect, the techniques and estimates used to prove such properties for the original
(uncontrolled) stochastic model can be applied here as well, and indeed proofs for the controlled
SPDEs proceed in very much the same way as those of their uncontrolled counterparts. A side
benefit of this pleasant situation is that one can often prove large deviation properties under mild
conditions, and indeed conditions that differ little from those needed for a basic qualitative analysis
of the original equation. In the present setting, we are able to relax two of the main technical
conditions used in [20], which are the uniform boundedness of the diffusion coefficient [i.e., the
function F in (5.1)] and the so called “cone condition” imposed on the underlying domain (cf. [19,
page 320]). In place of these, we require only that the domain be a bounded open set and that
the diffusion coefficients satisfy the standard linear growth condition. It is stated in Remark 3.2
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of [20] that although unique solvability holds under the weaker linear growth condition, they are
unable to derive the corresponding large deviation principle. The conditions imposed on F and O
in [20] enter in an important way in their proofs of the large deviation principle which is based
on obtaining suitable exponential tail probability estimates for certain stochastic convolutions in
Hölder norms. This relies on the application of a generalization of Garsia’s theorem [15], which
requires the restrictive conditions alluded to above. An important point is that these conditions
are not needed for unique solvability of the SPDE.

In contrast, the weak convergence proof presented here does not require any exponential prob-
ability estimates and hence these assumptions are no longer needed. Indeed, suitable exponential
continuity (in probability) and exponential tightness estimates are perhaps the hardest and most
technical parts of the usual proofs based on discretization and approximation arguments. This
becomes particularly hard in infinite dimensional settings where these estimates are needed with
metrics on exotic function spaces (e.g., Hölder spaces, spaces of diffeomorphisms, etc.).

Standard approaches to small noise LDP for infinite dimensional SDE build on the ideas of [2].
The key ingredients to the proof are as follows. One first considers an approximating Gaussian
model which is obtained from the original SDE by freezing the coefficients of the right hand side
according to a time discretization. Each such approximation is then further approximated by a
finite dimensional system uniformly in the value of the frozen (state) variable. Next one estab-
lishes an LDP for the finite dimensional system and argues that the LDP continues to hold as
one approaches the infinite dimensional model. Finally, one needs to obtain suitable exponential
continuity estimates in order to obtain the LDP for the original non-Gaussian model from that
for the frozen Gaussian model. Exponential continuity (in probability) and exponential tightness
estimates that are used to justify these approximations are often obtained under additional condi-
tions on the model than those needed for well posedness and compactness. In particular, as noted
earlier, for the reaction diffusion systems considered here, these rely on exponential tail probability
estimates in Hölder norms for certain stochastic convolutions which are only available for bounded
integrands.

An alternative approach, based on nonlinear semigroup theory and infinite dimensional Hamilton-
Jacobi (HJ) equations, has been developed in [11] (see also [12]). The method of proof involves
showing that the value function of the limit control problem that is obtained by the law of large
number analysis of certain controlled perturbations of the original stochastic model, uniquely solves
an appropriate infinite dimensional HJ equation in a suitable viscosity sense. In addition, one needs
to establish exponential tightness by verifying a suitable exponential compact containment estimate.
Although both these steps have been verified for a variety of models (cf. [12]), the proofs are quite
technical and rely on a uniqueness theory for infinite dimensional nonlinear PDEs. The unique-
ness requirement on the limit HJ equation is an extraneous artifact of the approach, and different
stochastic models seem to require different methods for this, in general very hard, uniqueness prob-
lem. In contrast to the weak convergence approach, it requires an analysis of the model that goes
significantly beyond the unique solvability of the SPDE. In addition, as discussed previously the
exponential tightness estimates are typically the most technical part of the large deviation analysis
for infinite dimensional models, and are often only available under “sub-optimal” conditions when
using standard techniques.
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We now give an outline of the paper. Section 2 contains some background material on large
deviations and infinite dimensional Brownian motions. We recall some basic definitions and the
equivalence between a LDP and Laplace principle for a family of probability measures on some Pol-
ish space. We next recall some commonly used formulations for an infinite dimensional Brownian
motion, such as an infinite sequence of i.i.d. standard real Brownian motions, a Hilbert space valued
Brownian motion, a cylindrical Brownian motion, and a space-time Brownian sheet. Relationships
between these various formulations are noted as well. In Section 3 we present a variational rep-
resentation for bounded nonnegative functionals of an infinite sequence of real Brownian motions.
This variational representation, originally obtained in [4], is the starting point of our study. We also
provide analogous representations for other formulations of infinite dimensional Brownian motions.
Section 4 gives a general uniform large deviation result for Polish space valued functionals of an
infinite dimensional Brownian motion. We provide sufficient conditions for the uniform LDP for
each of the formulations of an infinite dimensional Brownian motion mentioned above. In Section 5
we introduce the small noise reaction-diffusion SPDE and use the general uniform LDP of Section
4 to establish a Freidlin-Wentzell LDP for such SPDEs in an appropriate Hölder space. Finally,
Section 6 gives a brief overview of some other recent works that have used this variational approach
to establish small noise LDP for infinite dimensional models. An Appendix collects proofs that
were postponed for purposes of presentation.

Some notations and mathematical conventions used in this work are as follows. Infima over
the empty set are taken to be +∞. All Hilbert spaces in this work will be separable. The Borel
sigma-field on a Polish space S will be denoted by B(S).

2 Preliminaries

In this section we present some standard definitions and results from the theory of large deviations
and infinite dimensional Brownian motions.

Large Deviation Principle and Laplace Asymptotics. Let {X ε, ε > 0} be a family of random
variables defined on a probability space (Ω,F , P) and taking values in a Polish space (i.e., a complete
separable metric space) E . Denote the metric on E by d(x, y) and expectation with respect to P

by E. The theory of large deviations is concerned with events A for which probabilities P(X ε ∈ A)
converge to zero exponentially fast as ε → 0. The exponential decay rate of such probabilities is
typically expressed in terms of a “rate function” I mapping E into [0,∞].

Definition 2.1 (Rate function) A function I : E → [0,∞] is called a rate function on E if for each
M < ∞ the level set {x ∈ E : I(x) ≤ M} is a compact subset of E. For A ∈ B(E), we define
I(A) .= infx∈A I(x).

Definition 2.2 (Large deviation principle) Let I be a rate function on E. The sequence {X ε} is
said to satisfy the large deviation principle on E with rate function I if the following two conditions
hold.
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1. Large deviation upper bound. For each closed subset F of E

lim sup
ε→0

ε log P(X ε ∈ F ) ≤ −I(F ).

2. Large deviation lower bound. For each open subset G of E

lim inf
ε→0

ε log P(X ε ∈ G) ≥ −I(G).

If a sequence of random variables satisfies the large deviation principle with some rate function,
then the rate function is unique [9, Theorem 1.3.1].

In many problems one is interested in obtaining exponential estimates on functions which are more
general than indicator functions of closed or open sets. This leads to the study of the Laplace
principle.

Definition 2.3 (Laplace principle) Let I be rate function on E. The sequence {X ε} is said to
satisfy the Laplace principle upper bound (respectively lower bound) on E with rate function I if for
all bounded continuous functions h : E → R,

lim sup
ε→0

ε log E

{
exp

[
−1
ε
h(X ε)

]}
≤ − inf

f∈E
{h(f) + I(f)} (2.1)

and, respectively,

lim inf
ε→0

ε log E

{
exp

[
−1
ε
h(X ε)

]}
≥ − inf

f∈E
{h(f) + I(f)}. (2.2)

The Laplace principle is said to hold for {X ε} with rate function I if both the Laplace upper and
lower bounds are satisfied for all bounded continuous functions h.

One of the main results of the theory of large deviations is the equivalence between the Laplace
principle and the large deviation principle. For a proof we refer the reader to [9, Section 1.2].

Theorem 2.4 The family {X ε} satisfies the Laplace principle upper (respectively lower) bound
with a rate function I on E if and only if {X ε} satisfies the large deviation upper (respectively
lower) bound for all closed sets (respectively open sets) with the rate function I.

In view of this equivalence, the rest of this work will be concerned with the study of the
Laplace principle. In fact we will study a somewhat strengthened notion, namely a Uniform Laplace
Principle, as introduced below. The uniformity is critical in certain applications, such as the study
of exit time and invariant measure asymptotics for small noise Markov processes [14].

Let E0 and E be Polish spaces. For each ε > 0 and y ∈ E0 let X ε,y be a E–valued random
variables given on the probability space (Ω,F , P) .
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Definition 2.5 A family of rate functions Iy on E, parametrized by y ∈ E0, is said to have compact
level sets on compacts if for all compact subsets K of E0 and each M <∞, ΛM,K

.= ∪y∈K{x ∈ E :
Iy(x) ≤M} is a compact subset of E.

Definition 2.6 (Uniform Laplace Principle) Let Iy be a family of rate functions on E parameterized
by y in E0 and assume that this family has compact level sets on compacts. The family {X ε,y} is
said to satisfy the Laplace principle on E with rate function Iy, uniformly on compacts, if for all
compact subsets K on E0 and all bounded continuous functions h mapping E into R

lim
ε→0

sup
y∈K

∣∣∣∣ε log Ey

{
exp

[
−1
ε
h(X ε,y)

]}
+ inf

x∈E
{h(x) + Iy(x)}

∣∣∣∣ = 0.

We next summarize some well known formulations for infinite dimensional Brownian motions
and note some elementary relationships between them.

Infinite Dimensional Brownian Motions. An infinite dimensional Brownian motion arises
in a natural fashion in the study of stochastic processes with a spatial parameter. We refer the
reader to [8], [19], [29] for numerous examples in the physical sciences where an infinite dimensional
Brownian motion is used to model the driving noise for some dynamical system. Depending on the
application of interest the infinite dimensional nature of the driving noise may be expressed in a
variety of forms. Some examples include–an infinite sequence of i.i.d. standard (1–dim) Brownian
motions, a Hilbert space valued Brownian motion, a cylindrical Brownian motion, and a space-
time Brownian sheet. In what follows, we describe all of these models and explain how they are
related to each other. We will be only concerned with processes defined over a fixed time horizon
and thus fix a T > 0, and all filtrations and stochastic processes will be defined over the horizon
[0, T ]. Reference to T will be omitted unless essential. Let (Ω,F , P) be a probability space with an
increasing family of right continuous P–complete sigma fields {Ft}. We refer to (Ω,F , P, {Ft}) as
a filtered probability space.

Let {βi}∞i=1 be an infinite sequence of independent, standard, one dimensional, {Ft}–Brownian
motions given on this filtered probability space. We denote the product space of countably infinite
copies of the real line by R

∞. Endowed with the topology of coordinate-wise convergence, R
∞ is a

Polish space. Then β = {βi}∞i=1 is a random variable with values in the Polish space C([0, T ] : R∞)
and represents the simplest model of an infinite dimensional Brownian motion.

Frequently in applications it is convenient to endow the state space of the driving noise, as in
the finite dimensional theory, with an inner product structure. Let (H, 〈·, ·〉) be a real separable
Hilbert space. Let Q be a bounded, strictly positive, trace class operator on H .

Definition 2.7 An H–valued stochastic process {W (t)} defined on (Ω,F , P, {Ft}) is called a Q–
Wiener process with respect to {Ft} if for every non-zero h ∈ H ,{〈Qh, h〉− 1

2 〈W (t), h〉, {Ft}
}

is a one-dimensional standard Wiener process.
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It can be shown that if W is an H–valued Q–Wiener process then P[W ∈ C([0, T ] : H)] = 1, where
C([0, T ] : H) is the space of continuous functions from the closed interval [0, T ] to the Hilbert space
H . Let {ei}∞i=1 be a complete orthonormal system (CONS) for the Hilbert space H such that
Qei = λiei, where λi is the strictly positive ith eigenvalue of Q that corresponds to the eigenvector
ei. Since Q is a trace class operator,

∑∞
i=1 λi < ∞. Define β̃i(t)

.= 〈W (t), ei〉, t ≥ 0, i ∈ N. It
is easy to check that {β̃i} is a sequence of independent {Ft}–Brownian motions with quadratic
variation 〈〈β̃i, β̃j〉〉t = λiδijt, where δij = 1 if i = j and 0 otherwise. Setting βi = β̃i/

√
λi, {βi}∞i=1

is a sequence of independent, standard, one dimensional, {Ft}–Brownian motions. Thus starting
from a Q–Wiener process one can produce an infinite collection of independent, standard Brownian
motions in a straight forward manner. Conversely, given a collection of independent, standard
Brownian motions {βi}∞i=1 and (Q, {ei, λi}) as above one can obtain a Q–Wiener process W by
setting

W (t) .=
∞∑
i=1

√
λiβi(t)ei. (2.3)

The right hand side of (2.3) clearly converges in L2(Ω) for each fixed t. Furthermore, one can
check that the series also converges in C([0, T ] : H) almost surely (see [8, Theorem 4.3]). These
observations lead to the following result.

Proposition 2.8 There exist measurable maps f : C([0, T ] : R
∞) 
−→ C([0, T ] : H) and g : C([0, T ] :

H) 
−→ C([0, T ] : R
∞) such that f(β) = W and g(W ) = β a.s.

Remark 2.9 Consider the Hilbert space l2
.= {x ≡ (x1, x2, · · · ) : xi ∈ R and

∑
x2

i < ∞} with
the inner product 〈x, y〉 .= ∑

xiyi. Let {λi}∞i=1 be a sequence of strictly positive numbers such that∑
λi <∞. Then the Hilbert space l̄2

.= {x ≡ (x1, x2, · · · ) : xi ∈ R and
∑
λix

2
i <∞} with the inner

product 〈x, y〉1 .=
∑
λixiyi contains l2 and the embedding map is Hilbert-Schmidt. Furthermore, the

infinite sequence of real Brownian motions β takes values in l̄2 almost surely and can be regarded
as a l̄2–valued Q–Wiener process with 〈Qx, y〉1 =

∑∞
i=1 λ

2
i xiyi.

Equation (2.3) above can be interpreted as saying that the sequence {λi} (or equivalently the
trace class operator Q) injects a “coloring” to a white noise such that the resulting process has
better regularity. In some models of interest, such coloring is obtained indirectly in terms of (state
dependent) diffusion coefficients. It is natural in such situations to consider the driving noise as a
“cylindrical Brownian motion” rather than a Hilbert space valued Brownian motion. Let (H, 〈·, ·〉)
be a real separable Hilbert space and fix a filtered probability space as above.

Definition 2.10 A family {Bt(h) ≡ B(t, h) : t ∈ [0, T ], h ∈ H} of real random variables is said to
be an {Ft}–cylindrical Brownian motion if:

1. For every h ∈ Hwith ||h|| = 1, {B(t, h),Ft} is a standard Wiener process.

2. For every t ≥ 0, a1, a2 ∈ R and f1, f2 ∈ H ,

B(t, a1f1 + a2f2) = a1B(t, f1) + a2B(t, f2) a.s.

7



Note that if {Bt(h) : t ≥ 0, h ∈ H} is a cylindrical Brownian motion and {ei} is a CONS in
H then setting βi(t)

.= B(t, ei), we see that {βi} is a sequence of independent, standard, real-
valued Brownian motions. Conversely, given a sequence {βi}∞i=1 of independent, standard Brownian
motions on a filtered probability space,

Bt(h)
.=

∞∑
i=1

βi(t)〈ei, h〉 (2.4)

defines a cylindrical Brownian motion on H . For each h ∈ H , the series in (2.4) converges in L2(Ω)
and a.s. in C([0, T ] : R).

Proposition 2.11 Let B be a cylindrical Brownian motion as in Definition 2.10 and let β be as
constructed above. Then σ{Bs(h) : 0 ≤ s ≤ t, h ∈ H} = σ{β(s) : 0 ≤ s ≤ t}. In particular, if X
is a σ{B(s, h) : 0 ≤ s ≤ T, h ∈ H} measurable random variable then there exists a measurable map
g : C([0, T ] : R∞) 
−→ R such that g(β) = X a.s.

In many physical dynamical systems with randomness, the driving noise is given as a space-
time white noise process, also referred to as a Brownian sheet. In what follows we introduce
this stochastic process and describe its relationship with the formulations considered above. Let
(Ω,F , P, {Ft}) be a filtered probability space as before and fix a bounded open subset O ⊆ Rd.

Definition 2.12 A Gaussian family of real-valued random variables
{
B(t, x), (t, x) ∈ [0, T ]×O}

on a filtered probability space is called a Brownian sheet if the following hold.

1. If (t, x) ∈ [0, T ]×O, then EB(t, x) = 0.

2. If 0 ≤ s ≤ t ≤ T and x ∈ O, then B(t, x) − B(s, x) is independent of {Fs}.
3. Cov

(
B(t, x), B(s, y)

)
= λ(At,x ∩ As,y), where λ is the Lebesgue measure on [0, T ] × O and

At,x
.=
{
(s, y) ∈ R+ ×O : 0 ≤ s ≤ t and yj ≤ xj j = 1, · · · , d}.

4. The map (t, u) 
→ B(t, u) from [0, T ]×O to R is continuous a.s.

To introduce stochastic integrals with respect to a Brownian sheet we need the following definitions.

Definition 2.13 (Elementary and simple functions) A function f : O × [0, T ] × Ω → R is ele-
mentary if there exist a, b ∈ [0, T ], a ≤ b, a bounded {Fa}–measurable random variable X and
A ∈ B(O) such that

f(x, s, ω) = X(ω)1(a,b](s)1A(x).

A finite sum of elementary functions is referred to as a simple function. We denote by S the class
of all simple functions.

Definition 2.14 (Predictable σ–field) The predictable σ–field P on Ω × [0, T ] × O is the σ–field
generated by S. A function f : Ω×[0, T ]×O → R is called a predictable process if it is P–measurable.
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Let P2 be the class of all predictable processes f such that
∫
[0,T ]×O f

2(s, x)dsdx < ∞, a.s.. Also,
let L2 be the subset of those processes that satisfy

∫
[0,T ]×O Ef2(s, x)dsdx <∞. For all f ∈ P2 the

stochastic integral Mt(f) .=
∫
[0,t]×O f(s, u)B(dsdu), t ∈ [0, T ] is well defined as in Chapter 2 of [29].

Furthermore, for all f ∈ P2, {Mt(f)}0≤t≤T is a continuous {Ft}–local martingale which is in fact
a square integrable martingale if f ∈ L2. The quadratic variation of this local martingale is given
as 〈〈M(f),M(f)〉〉t .=

∫
[0,t]×O f

2(s, x)dsdx. More properties of the stochastic integral can be found
in [29].

Let {φi}∞i=1 be a CONS in L2(O). Then it is easy to verify that β ≡ {βi}∞i=1 defined as
βi(t)

.=
∫
[0,t]×O φi(x)B(dsdx), i ≥ 1, t ∈ [0, T ] is a sequence of independent, standard, real

Brownian motions. Also for (t, x) ∈ [0, T ]×O

B(t, x) =
∞∑
i=1

βi(t)
∫
O
φi(y)1(−∞,x](y)dy, (2.5)

where (−∞, x] = {y : yi ≤ xi for all i = 1, · · · , d} and the series in (2.5) converges in L2(Ω) for
each (t, x). From these considerations it follows that

σ{B(t, x), t ∈ [0, T ], x ∈ O} = σ{βi(t), i ≥ 1, t ∈ [0, T ]}. (2.6)

As a consequence of (2.6) we have the following result.

Proposition 2.15 There exists a measurable map g : C([0, T ] : R
∞) → C([0, T ]×O : R) such that

B = g(β) a.s., where β is as defined above (2.5).

3 Variational Representations

The large deviation results established in this work critically use certain variational representations
for infinite dimensional Brownian motions. Let (Ω,F , P, {Ft}) be as before and let β = {βi} be a
sequence of independent real standard Brownian motions. Recall that β is a C([0, T ] : R

∞)–valued
random variable. We call a function f : [0, T ]×Ω → R elementary if there exist a, b ∈ [0, T ], a ≤ b,
and a bounded {Fa}–measurable random variable X such that f(s, ω) = X(ω)1(a,b](s). A finite
sum of elementary functions is referred to as a simple function. We denote by S the class of all
simple functions. The predictable σ–field P on Ω × [0, T ] is the σ–field generated by S. For a
Hilbert space (H, 〈·, ·〉), a function f : Ω × [0, T ] → H is called an H–valued predictable process
if it is P–measurable. Let P2(H) be the family of all H–valued predictable processes for which∫ T
0 ||φ(s)||2ds <∞ a.s., where ||·|| is the norm in the Hilbert space H . Note that in the case H = l2,
u ∈ P2(H) = P2(l2) can be written as u = {ui}∞i=1 where ui ∈ P2(R) and

∑∞
i=1

∫ T
0 |ui(s)|2ds < ∞

a.s.

Theorem 3.1 Let || · || denote the norm in the Hilbert space l2 and let f be a bounded, Borel
measurable function mapping C([0, T ] : R∞) into R. Then,

− log E(exp{−f(β)}) = inf
u∈P2(l2)

E

(
1
2

∫ T

0
||u(s)||2ds+ f

(
β +

∫ ·

0
u(s)ds

))
.
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The representation established in [4] is stated in a different form but is equivalent to Theorem
3.1. Let (H, 〈·, ·〉) be a Hilbert space and let W be an H–valued Q–Wiener process, where Q is
a bounded, strictly positive, trace class operator on the Hilbert space H . Let H0 = Q1/2H , then
H0 is a Hilbert space with the inner product 〈h, k〉0 .=

〈
Q−1/2h, Q−1/2h

〉
, h, k ∈ H0. Also the

embedding map i : H0 
→ H is a Hilbert-Schmidt operator and ii∗ = Q. Let || · ||0 denote the
norm in the Hilbert space H0. The following theorem is proved in [4]. Theorem 3.1 follows from
Theorem 3.2 and Remark 2.9.

Theorem 3.2 Let f be a bounded, Borel measurable function mapping C([0, T ] : H) into R. Then

− log E(exp{−f(W )}) = inf
u∈P2(H0)

E

(
1
2

∫ T

0
||u(s)||20ds+ f

(
W +

∫ ·

0
u(s)ds

))
.

We finally note the following representation theorem for a Brownian sheet which follows from
Theorem 3.1, Proposition 2.15 and an application of Girsanov’s theorem.

Theorem 3.3 Let f : C([0, T ]×O : R) → R be a bounded measurable map. Let B be a Brownian
sheet as in Definition 2.12. Then

− log E(exp{−f(B)}) = inf
u∈P2

E

(
1
2

∫ T

0

∫
O
u2(s, r)drds+ f(Bu)

)
,

where Bu(t, x) = B(t, x) +
∫ t
0

∫
(−∞,x]∩O u(s, y)dyds.

4 Large Deviations for Functionals of Infinite Dimensional Brow-

nian Motions

In this section we give sufficient conditions for the uniform Laplace principle for functionals of an
infinite dimensional Brownian motion. The uniformity is with respect to a parameter x (typically
an initial condition), which takes values in some compact subset of a Polish space E0. The anal-
ogous non-uniform result was established in [4]. The proof for the uniform case uses only minor
modifications, but for the sake of completeness we include the details in the Appendix.

We begin by considering the case of a Hilbert space valued Wiener process and then use this case
to deduce analogous Laplace principle results for functionals of a cylinderical Brownian motion and
a Brownian sheet. Let (Ω,F , P, {Ft}), (H, 〈·, ·〉), Q be as in Section 2 and let W be an H–valued
Wiener process with trace class covariance Q given on this filtered probability space (see Definition
2.7). Let E be a Polish space and for each ε > 0 let Gε : E0 × C([0, T ] : H) → E be a measurable
map. We next present a set of sufficient conditions for a uniform large deviation principle to hold
for the family {X ε,x .= Gε(x,

√
εW )} as ε → 0. Let H0 be as introduced above Theorem 3.2 and

define for N ∈ N

SN(H0)
.=
{
u ∈ L2([0, T ] : H0) :

∫ T

0
||u(s)||20ds ≤ N

}
. (4.1)
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PN
2 (H0)

.=
{
u ∈ P2(H0) : u(ω) ∈ SN(H0), P − a.s.

}
. (4.2)

It is easy to check that SN (H0) is a compact metric space under the metric

d1(x, y) =
∞∑
i=1

1
2i

∣∣∣∣∫ T

0
〈x(s) − y(s), ei(s)〉0 ds

∣∣∣∣ .
Henceforth, wherever we refer to SN(H0), we will consider it endowed with the topology obtained
from the metric d1 and refer to this as the weak topology on SN(H0).

Assumption 4.1 There exists a measurable map G0 : E0×C([0, T ] : H) → E such that the following
hold.

1. For every M <∞ and compact set K ⊆ E0 the set

ΓM,K
.=
{
G0

(
x,

∫ ·

0

u(s)ds
)

: u ∈ SM(H0), x ∈ K

}
is a compact subset of E.

2. Consider M < ∞ and families {uε} ⊂ PM
2 (H0) and {xε} ⊂ E0 such that uε converges in

distribution (as SM(H0)–valued random elements) to u and xε → x as ε→ 0. Then

Gε

(
xε,

√
εW (·) +

∫ ·

0
uε(s)ds

)
→ G0

(
x,

∫ ·

0
u(s)ds

)
in distribution as ε→ 0.

Theorem 4.2 Let X ε,x = Gε(x,
√
εW ) and suppose that Assumption 4.1 holds. For x ∈ E0 and

f ∈ E, let

Ix(f) .= inf
{u∈L2([0,T ]:H0):f=G0(x,

∫ ·
0 u(s)ds)}

{
1
2

∫ T

0
||u(s)||20ds

}
. (4.3)

Suppose that for all f ∈ E , x 
→ Ix(f) is a lower semi-continuous (l.s.c.) map from E0 to [0,∞].
Then, for all x ∈ E0, f 
→ Ix(f) is a rate function on E and the family {Ix(·), x ∈ E0} of rate
functions has compact level sets on compacts. Furthermore, the family {X ε,x} satisfies the Laplace
principle on E, with rate function Ix, uniformly on compact subsets of E0.

As noted earlier, an analogous non-uniform result was established in [4]. We remark that there is a
slight change in notation from [4]. Denoting the map Gε introduced in [4] by Gε, the correspondence
with the Gε introduced in this section is given as Gε(x, f) = Gε(x, f

√
ε) for x ∈ E0 and f ∈ C([0, T ] :

H).

Next let β ≡ {βi} be a sequence of independent standard real Brownian motions on (Ω,F , P, {Ft}).
Recall that β is a (C([0, T ] : R

∞),B(C([0, T ] : R
∞))) ≡ (S, S) valued random variable. For each

ε > 0 let Gε : E0 × S → E be a measurable map and define

Xε,x .= Gε(x,
√
εβ). (4.4)
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We now consider the Laplace principle for the family {Xε,x} and introduce the analog of Assumption
4.1 for this setting. In the assumption, SM(l2) and PM

2 (l2) are defined as in (4.1) and (4.2), with
H0 there replaced by the Hilbert space l2.

Assumption 4.3 There exists a measurable map G0 : E0 × S → E such that the following hold.

1. For every M <∞ and compact set K ⊆ E0 the set

ΓM,K
.=
{
G0

(
x,

∫ ·

0
u(s)ds

)
: u ∈ SM(l2), x ∈ K

}
is a compact subset of E.

2. Consider M < ∞ and families {uε} ⊂ PM
2 (l2) and {xε} ⊂ E0 such that uε converges in

distribution (as SM(l2)–valued random elements) to u and xε → x as ε→ 0. Then

Gε
(
xε,

√
εβ +

∫ ·

0
uε(s)ds

)
→ G0

(
x,

∫ ·

0
u(s)ds

)
,

as ε→ 0 in distribution.

The proof of the following, which uses a straightforward reduction to Theorem 4.2, is given in
the Appendix.

Theorem 4.4 Let X ε,x be as in (4.4) and suppose that Assumption 4.3 holds. For x ∈ E0 and
f ∈ E let

Ix(f) .= inf
{u∈L2([0,T ]:l2):f=G0(x,

∫ ·
0 u(s)ds)}

{
1
2

∫ T

0
||u(s)||2l2ds

}
. (4.5)

Suppose that for all f ∈ E , x 
→ Ix(f) is a l.s.c. map from E0 to [0,∞]. Then, for all x ∈ E0, f 
→
Ix(f) is a rate function on E and the family {Ix(·), x ∈ E0} of rate functions has compact level
sets on compacts. Furthermore, the family {X ε,x} satisfies the Laplace principle on E, with rate
function Ix, uniformly on compact subsets of E0.

Finally, to close this section, we consider Laplace principle for functionals of a Brownian sheet.
Let B be a Brownian sheet as in Definition 2.12. Let Gε : E0 × C([0, T ]×O : R) → E , ε > 0 be a
family of measurable maps. Define Xε,x .= Gε(x,

√
εB). We now provide sufficient conditions for

Laplace principle to hold for the family {Xε,x}.
Analogous to classes defined in (4.1) and (4.2), we introduce

SN .=

{
φ ∈ L2([0, T ]×O) :

∫
[0,T ]×O

φ2(s, r)dsdr ≤ N

}
.

PN
2

.= {u ∈ P2 : u(ω) ∈ SN , P − a.s.}. (4.6)
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Once more, SN is endowed with the weak topology on L2([0, T ]×O), under which it is a compact
metric space. For u ∈ L2([0, T ]×O), define Int(u) ∈ C([0, T ]×O : R) by

Int(u)(t, x) .=
∫

[0,t]×(O∩(−∞,x])
u(s, y)dsdy, (4.7)

where as before (−∞, x] = {y : yi ≤ xi for all i = 1, · · · , d}.

Assumption 4.5 There exists a measurable map G0 : E0 × C([0, T ] × O : R) → E such that the
following hold.

1. For every M <∞ and compact set K ⊆ E0, the set

ΓM,K
.=
{G0(x, Int(u)) : u ∈ SM , x ∈ K

}
is a compact subset of E, where Int(u) is as defined above Assumption 4.5.

2. Consider M <∞ and families {uε} ⊂ PM
2 and {xε} ⊂ E0 such that uε converges in distribu-

tion (as SM–valued random elements) to u and xε → x as ε → 0. Then

Gε
(
xε,

√
εB + Int(uε)

)→ G0 (x, Int(u)) ,

in distribution as ε→ 0.

For f ∈ E and x ∈ E0 define

Ix(f) = inf
{u∈L2([0,T ]×O):f=G0(x,Int(u))}

{
1
2

∫
[0,T ]×O

u2(s, r)drds

}
. (4.8)

Theorem 4.6 Let G0 : E0 × C([0, T ] × O : R) → E be a measurable map satisfying Assumption
4.5. Suppose that for all f ∈ E , x 
→ Ix(f) is a l.s.c. map from E0 to [0,∞]. Then for every
x ∈ E0, Ix : E → [0,∞], defined by (4.8), is a rate function on E and the family {Ix, x ∈ E0} of rate
functions has compact level sets on compacts. Furthermore, the family {Xx,ε} satisfies the Laplace
principle on E with rate function Ix, uniformly for x in compact subsets of E0.

The proof of this theorem can be found in the Appendix.

5 Stochastic Reaction-Diffusion Systems

5.1 The Large Deviation Theorem

In this section we will use results from Section 4, and in particular Theorem 4.6, to study the
small noise large deviations principle for a class of stochastic partial differential equations (SPDE)
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that has been considered in [21]. The class includes, as a special case, the reaction-diffusion SPDEs
considered in [26] (see Remark 5.6). The main result of the section is Theorem 5.5, which establishes
the uniform Freidlin-Wentzell LDP for such SPDEs.

As discussed previously, the weak convergence method bypasses the various discretizations, ap-
proximations and exponential probability estimates that are commonly used in standard approaches
to the problem. Instead, one needs to only prove various qualitative properties (compactness, con-
vergence, etc.) for sequences of controlled versions of the SPDE model. As one might expect, the
techniques and estimates used to prove these properties for the original SPDE can be applied here
as well, and indeed proofs for the controlled SPDEs proceed in very much the same way as those
of their uncontrolled counterparts.

Let (Ω,F , P) be a probability space with an increasing family of right-continuous, P–complete
σ–fields {Ft}0≤t≤T . Let O ⊆ R

d be a bounded open set and {B(t, x) : (t, x) ∈ R+ × O} be a
Brownian sheet given on this filtered probability space. Consider the SPDE

dX(t, r) = (L(t)X(t, r) +R (t, r, X(t, r))) drdt+
√
εF (t, r, X(t, r))B(drdt) (5.1)

with initial condition
X(0, r) = ξ(r).

Here {L(t) : t ≥ 0} is a family of linear, closed, densely defined operators on C(O) that generates a
two parameter strongly continuous semigroup {U(t, s) : 0 ≤ s ≤ t} on C(O), with kernel function
G(t, s, r, q), 0≤ s ≤ t, r, q ∈ O. Thus for f ∈ C(O),

(U(t, s)f)(r) =
∫
O
G(t, s, r, q)f(q)dq, r ∈ O, 0 ≤ s ≤ t ≤ T.

Also, F and R are measurable maps from [0, T ]×O× R to R and ε ∈ (0,∞). By a solution of the
SPDE (5.1), we mean the following:

Definition 5.1 A random field X ≡ {X(t, r) : t ∈ [0, T ], r ∈ O} is called a mild solution of the
stochastic partial differential equation (5.1) with initial condition ξ if (t, r) 
→ X(t, r) is continuous
a.s., X(t, r) is {Ft}–measurable for any t ∈ [0, T ], r ∈ O, and if

X(t, r) =
∫
O
G(t, 0, r, q)ξ(q)dq +

∫ t

0

∫
O
G(t, s, r, q)R (s, q, X(s, q))dqds

+
√
ε

∫ t

0

∫
O
G(t, s, r, q)F (s, q, X(s, q))B(dqds) a.s. (5.2)

Implicit in Definition 5.1 is the requirement that the integrals in (5.2) are well defined. We will
shortly introduce conditions on G, F and R that ensure that for a continuous adapted random field
X , all the integrals in (5.2) are meaningful. As a convention, we take G(t, s, r, q) to be zero when
0 ≤ t < s ≤ T, r, q ∈ O.
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For u ∈ PN
2 [which was defined in (4.6)] the controlled analogue of (5.2) is

Y (t, r) =
∫
O
G(t, 0, r, q)x(q)dq+

∫ t

0

∫
O
G(t, s, r, q)R(s, q, Y (s, q))dqds

+
√
ε

∫ t

0

∫
O
G(t, s, r, q)F (s, q, Y (s, q))B(dqds) (5.3)

+
∫ t

0

∫
O
G(t, s, r, q)F (s, q, Y (s, q))u(s, q)dqds.

As discussed previously, the main work in proving an LDP for (5.2) will be to prove qualitative
properties (existence and uniqueness, tightness properties, and stability under perturbations) for
solutions to (5.3). We begin by discussing known qualitative theory for (5.2).

For α > 0, let Bα = {ψ ∈ C(O) : ||ψ||α <∞} be the Banach space with norm

||ψ||α = ||ψ||0 + sup
r,q∈O

|ψ(r)− ψ(q)|
|r− q|α ,

where ||ψ||0 = supr∈O |ψ(r)|. The Banach space Bα([0, T ]×O) is defined similarly and for notational
convenience we denote this space by BT

α . For α = 0 the space BT
0 is the space of all continuous maps

from [0, T ] × O to R endowed with the sup–norm. The following will be a standing assumption
for this section. In the assumption, ᾱ is a fixed constant, and the large deviation principle will be
proved in the topology of C([0, T ] : Bα), for any fixed α ∈ (0, ᾱ).

Assumption 5.2 The following two conditions hold.

1. There exist constants K(T ) <∞ and γ ∈ (d,∞) such that

(a) for all t, s ∈ [0, T ], r ∈ O, ∫
O
|G(t, s, r, q)|dq ≤ K(T ), (5.4)

(b) for all 0 ≤ s < t ≤ T and r, q ∈ O,

|G(t, s, r, q)| ≤ K(T )(t− s)−
d
γ , (5.5)

(c) if ᾱ = γ−d
2γ , then for any α ∈ (0, ᾱ) and for all 0 ≤ s < t1 ≤ t2 ≤ T, r1, r2, q ∈ O

|G(t1, s, r1, q)−G(t2, s, r2, q)| (5.6)

≤ K(T )
[
(t2 − t1)

1−d
γ (t1 − s)−1 + |r1 − r2|2α(t1 − s)−

d+2α
γ

]
,

(d) for all x, y ∈ R, r ∈ O and 0 ≤ t ≤ T ,

|R(t, r, x)− R(t, r, y)|+ |F (t, r, x)− F (t, r, y)| ≤ K(T )|x− y| (5.7)

and
|R(t, r, x)|+ |F (t, r, x)| ≤ K(T )(1 + |x|). (5.8)
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2. For any α ∈ (0, ᾱ) and ξ ∈ Bα, the trajectory t 
→ ∫
O G(t, 0, ·, q)ξ(q)dq belongs to C([0, T ] : Bα)

and the map

Bα � ξ 
−→
{
t 
→

∫
O
G(t, 0, ·, q)ξ(q)dq

}
∈ C([0, T ] : Bα)

is a continuous map.

For future reference we recall that ᾱ = γ−d
2γ and note that ᾱ ∈ (0, 1/2).

Remark 5.3 1. We refer the reader to [20] for examples of families {L(t)}t≥0 that satisfy this
assumption.

2. Using (5.4) and (5.5) it follows that for any 0 ≤ s < t ≤ T and r ∈ O∫
O
|G(t, s, r, q)|2dq ≤ K2(T )(t− s)−

d
γ . (5.9)

This in particular ensures that the stochastic integral in (5.2) is well defined.

3. Lemma 4.1(ii) of [20] shows that under Assumption 5.2, for any α < ᾱ there exists a constant
K̃(α) such that for all 0 ≤ t1 ≤ t2 ≤ T and all r1, r2 ∈ O∫ T

0

∫
O
|G(t1, s, r1, q)−G(t2, s, r2, q)|2dqds ≤ K̃(α)ρ ((t1, r1), (t2, r2))

2α , (5.10)

where ρ is the Euclidean distance in [0, T ]×O ⊂ R
d+1. This estimate will be used in the proof

of Lemma 5.11.

The following theorem is due to Kotelenez (see Theorem 2.1 and Theorem 3.4 in [21]; see also
Theorem 3.1 in [20]).

Theorem 5.4 Fix α ∈ (0, ᾱ). There exists a measurable function

Gε : Bα × B
T
0 → C([0, T ] : Bα)

such that for any filtered probability space (Ω,F , P, {Ft}) with a Brownian sheet B as above and
x ∈ Bα, X ε,x .= Gε(x,

√
εB) is the unique mild solution of (5.1) (with initial condition x), and

satisfies sup0≤t≤T E||X ε,x(t)||p0 <∞ for all p ≥ 0.

For the rest of the section we will only consider α ∈ (0, ᾱ). For f ∈ C([0, T ] : Bα) define

Ix(f) .= inf
u

∫
[0,T ]×O

u2(s, q)dqds, (5.11)

where the infimum is taken over all u ∈ L2([0, T ]×O) such that

f(t, r) =
∫
O
G(t, 0, r, q)x(q)dq+

∫
[0,t]×O

G(t, s, r, q)R(s, q, f(s, q))dqds

+
∫

[0,t]×O
G(t, s, r, q)F (s, q, f(s, q))u(s, q)dqds. (5.12)

The following is the main result of this section.
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Theorem 5.5 Let X ε,x be as in Theorem 5.4. Then Ix defined by (5.11) is a rate function on
C([0, T ] : Bα) and the family {Ix, x ∈ Bα} of rate functions has compact level sets on compacts.
Furthermore, {X ε,x} satisfies the Laplace principle on C([0, T ] : Bα) with the rate function Ix,
uniformly for x in compact subsets of Bα.

Remark 5.6 1. If Assumption 5.2 (2) is weakened to merely the requirement that for every
ξ ∈ Bα, t 
→ ∫

OG(t, 0, ·, q)ξ(q)dq is in C([0, T ] : Bα), then the proof of Theorem 5.5 shows
that for all x ∈ Bα, the large deviation principle for {X ε,x} on C([0, T ] : Bα) holds (but not
necessarily uniformly).

2. The small noise LDP for a class of reaction-diffusion SPDEs, with O = [0, 1] and a bounded
diffusion coefficient, has been studied in [26]. A difference in the conditions on the kernel G
in [26] is that instead of (5.6), G satisfies the L2 estimate in Remark 5.3 (3) with α = 1/4.
One finds that the proof of Lemma 5.11, which is at the heart of the proof of Theorem 5.5,
only uses the L2 estimate rather than the condition (5.6). Using this observation one can,
in a straightforward manner, extend results of [26] to the case where the diffusion coefficient,
instead of being bounded, satisfies the linear growth condition (5.8).

Since the proof of Theorem 5.5 relies on properties of the controlled process (5.3), the first step is to
prove existence and uniquness of solutions. This follows from a standard application of Girsanov’s
Theorem.

Theorem 5.7 Let Gε be as in Theorem 5.4 and let u ∈ PN
2 for some N ∈ N0 where PN

2 is as
defined in (4.6). For ε > 0 and x ∈ Bα define

X ε,u
x

.= Gε
(
x,

√
εB + Int(u)

)
where Int is defined in (4.7). Then X ε,u

x is the unique solution of (5.3).

Proof. Fix u ∈ PN
2 . Since

E

(
exp

{
− 1√

ε

∫
[0,T ]×O

u(s, q)B(dqds)− 1
2ε

∫
[0,T ]×O

u2(s, q)dqds

})
= 1,

the measure γu,ε defined by

dγu,ε = exp

{
− 1√

ε

∫
[0,T ]×O

u(s, q)B(dqds)− 1
2ε

∫
[0,T ]×O

u2(s, q)dqds

}
dP

is a probability measure on (Ω,F , P). Furthermore, γu,ε is mutually absolutely continuous with
respect to P and by Girsanov’s theorem (see [8, Theorem 10.14]) the process B̃ = B + ε−1/2Int(u)
on (Ω,F , γu,ε, {Ft}) is a Brownian sheet. Thus, by Theorem 5.4 X ε,u

x = Gε (x,
√
εB + Int(u)) is the

unique solution of (5.2), with B there replaced by B̃, on (Ω,F , γu,ε, {Ft}). However equation (5.2)
with B̃ is precisely same as equation (5.3), and since γu,ε and P are mutually absolutely continuous,
we get that X ε,u

x is the unique solution of (5.3) on (Ω,F , P, {Ft}). This completes the proof.
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In the next subsection we will study, under the standing assumption of this section, the following
two basic qualitative results regarding the processes X ε,u

x . The first is simply the controlled, zero-
noise version of the theorem just stated and its proof, being very similar to the proof of Theorem
5.4, is omitted. The next is a standard convergence result whose proof is given in Section 5.2.

Theorem 5.8 Fix x ∈ Bα and u ∈ L2([0, T ]×O). Then there is a unique function f in C([0, T ] :
Bα) which satisfies equation (5.12).

In analogy with the notation Xε,u
x for the solution of (5.3), we will denote the unique solution f

given by Theorem 5.8 asX0,u
x . Let θ : [0, 1) → [0, 1) be a measurable map such that θ(r) → θ(0) = 0

as r → 0.

Theorem 5.9 Let M < ∞, and suppose that xε → x and uε → u in distribution as ε → 0 with
{uε} ⊂ PM

2 . Then X
θ(ε),uε

xε → X
0,u
x in distribution.

Proof of Theorem 5.5. Define the map G0 : Bα ×BT
0 → C([0, T ] : Bα) as follows. For x ∈ Bα and

φ ∈ B
T
0 of the form φ(t, x) .= Int(u)(t, x) for some u ∈ L2([0, T ]×O), we define G0(x, φ) = X0,u

x .
Set G0(x, φ) = 0 for all other φ ∈ BT

0 . In view of Theorem 4.6, it suffices to show that (Gε, G0)
satisfy Assumption 4.5 with E0 and E there replaced by Bα and C([0, T ]; Bα) respectively; and for
all f ∈ E , the map x 
→ Ix(f) is l.s.c. The latter property and the first part of Assumption 4.5 is
immediate on applying Theorem 5.8 and Theorem 5.9 with θ = 0. The second part of Assumption
4.5 follows on applying Theorem 5.9 with θ(r) = r, r ∈ [0, 1). �

5.2 Qualitative Properties of Controlled Stochastic Reaction-Diffusion Equa-
tions

This section is devoted to the proof of Theorem 5.9. Our first result shows that Lp bounds hold for
controlled SDEs, uniformly when the initial condition and controls lie in compact sets and ε ∈ [0, 1).
Note in particular that ε = 0 is allowed.

Lemma 5.10 If K is any compact subset of Bα and M <∞, then for all p ∈ [1,∞)

sup
u∈PM

2

sup
x∈K

sup
ε∈[0,1)

sup
(t,r)∈[0,T ]×O

E|X ε,u
x (t, r)|p <∞.

Proof. By Doob’s inequality there exists a suitable constant c1 such that

E|X ε,u
x (t, r)|p ≤ c1

∣∣∣∣∫OG(t, 0, r, q)x(q)dq
∣∣∣∣p + c1E

∣∣∣∣∫ t

0

∫
O
G(t, s, r, q)R (s, q, X ε,u

x (s, q))dqds
∣∣∣∣p

+ c1E

[∫ t

0

∫
O
|G(t, s, r, q)|2 |F (s, q, X ε,u

x (s, q))|2 dqds
] p

2

+ c1E

[∫ t

0

∫
O
|G(t, s, r, q)| |F (s, q, X ε,u

x (s, q))| |u(s, q)|dqds
]p
.
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Using (5.8) and the Cauchy-Schwarz inequality the right hand side above can be bounded by

c2

[
1 + E

(∫ t

0

∫
O
|G(t, s, r, q)|2|X ε,u

x (s, q)|2dqds
)p

2

]
.

Hölder’s inequality yields for p > 2 that

Λp(t) ≤ c2

⎡⎣1 +
(∫ T

0

∫
O
|G(t, s, r, q)|2p̃dqds

)p−2
2
∫ t

0

Λp(s)ds

⎤⎦ ,
where Λp(t) = supu∈PM

2
supx∈K supε∈[0,1) supr∈O E|X ε,u

x (t, r)|p and p̃ = p
p−2 . Choose p0 large enough

that ( 2p0

p0−2 − 1)(1− 2ᾱ) < 1. Using (5.4) and (5.5), we have for all p ≥ p0 that

[∫ T

0

∫
O
|G(t, s, r, q)|2p̃dqds

]p−2
2

≤ c3T
(1−(2p̃−1)(1−2ᾱ)) p−2

2 .

Thus for every p ≥ p0 there exists a constant c4 such that Λp(t) ≤ c4

[
1 +

∫ t
0 Λp(s)ds

]
. The result

now follows from Gronwall’s lemma.

The following lemma will be instrumental in proving tightness and weak convergence in Banach
spaces such as Bα and BT

α .

Lemma 5.11 Let A ⊆ P2 be a family such that for all p ≥ 2

sup
f∈A

sup
(t,r)∈[0,T ]×O

E|f(t, r)|p <∞. (5.13)

Also, let B ⊆ PM
2 for some M <∞. For f ∈ A and u ∈ B define Ψ1(t, r)

.=
∫ t
0

∫
O G(t, s, r, q)f(s, q)B(dqds)

and Ψ2(t, r)
.=
∫ t
0

∫
OG(t, s, r, q)f(s, q)u(s, q)dqds, where the dependence on f and u is not made

explicit in the notation. Then for any α < ᾱ and i = 1, 2,

sup
f∈A,u∈B

E

{
sup

ρ((t,r),(s,q))<1

|Ψi(t, r)− Ψi(s, q)|
ρ ((t, r), (s, q))α

}
<∞.

Proof. We will prove the result for i = 1; the proof for i = 2 is identical (except an additional
application of the Cauchy-Schwarz inequality) and thus it is omitted. Henceforth we write, for
simplicity, Ψ1 as Ψ. We will apply Theorem 6 of [16], according to which it suffices to show that
for all 0 ≤ t1 < t2 ≤ T , r1, r2 ∈ O,

sup
f∈A,u∈B

E |Ψ(t2, r2) − Ψ(t1, r1)|p ≤ cp (ω̂ (ρ ((t1, r1), (t2, r2))))
p , (5.14)

for a suitable constant cp; a p > 2; and a function ω̂ : [0,∞) → [0,∞) satisfying∫ 1

0

ω̂(u)
u1+α+(d+1)/p

du <∞.
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We will show that (5.14) holds with ω̂(u) = uα0 for some α0 ∈ (α, ᾱ) and all p sufficiently large.
This will clearly establish the result.

Fix α0, α̃ such that α < α0 < α̃ < ᾱ and let t1 < t2, r1, r2 ∈ O and p > 2. We will need p to be
sufficiently large and the choice of p will be fixed in the course of the proof. By Doob’s inequality
there exists a constant c1 such that:

E |Ψ(t2, r2) − Ψ(t1, r1)|p ≤ c1E

[∫ T

0

∫
O
|G(t2, s, r2, q)−G(t1, s, r1, q)|2 |f(s, q)|2dqds

]p
2

. (5.15)

Let p̃ = p/(p−2) and δ = 4/p. Note that (2− δ)p̃ = δp/2 = 2. Hölder’s inequality, (5.9) and (5.13)
give that the right hand side of (5.15) is bounded by

c1

[∫ T

0

∫
O
|G(t2, s, r2, q)−G(t1, s, r1, q)|(2−δ)p̃ dqds

]p−2
2

×
[∫ T

0

∫
O
|G(t2, s, r2, q)−G(t1, s, r1, q)|δp/2

E|f(s, q)|pdqds
]

≤ c2

[∫ T

0

∫
O
|G(t2, s, r2, q)−G(t1, s, r1, q)|2 dqds

] p−2
2

(5.16)

for a suitable constant c2 that is independent of f . ¿From Remark 5.3(3), the expression in (5.16)
can be bounded (for p large enough) by

c3ρ ((t1, r1), (t2, r2))
α̃(p−2) ≤ c4ρ ((t1, r1), (t2, r2))

α0p .

The result follows.

The next result will be used to prove the stochastic integral converges to 0 in C([0, T ] × O),
which will be strengthened shortly.

Lemma 5.12 Let A and Ψ1 be as in Lemma 5.11 and let Zε
f
.=
√
ε Ψ1. Then for every sequence

{fε} ⊂ A, Zε
fε

P→ 0 in C([0, T ]×O), as ε→ 0.

Proof. Arguments similar to those lead to (5.16) along with (5.4), (5.5) and (5.13) yield that
supf∈A E|Ψ1(t, r)|2 < ∞. This shows that for each (t, r) ∈ [0, T ] × O, Zε

fε
(t, r) P→ 0 (in fact in

L2). Defining ω(x, δ) .= sup {|x(t, r)− x(t′, r′)| : ρ ((t, r), (t′, r′)) ≤ δ} for x ∈ C([0, T ] × O) and
δ ∈ (0, 1), we see that ω(Zε

fε
, δ) =

√
εδαM ε

fε
where M ε

f
.= supρ((t,r),(s,q))<1

|Ψ1(t,r)−Ψ1(s,q)|
ρ((t,r),(s,q))α

. Therefore
from Lemma 5.11

lim
δ→0

lim
ε→0

Eω(Zε
fε
, δ) = 0.

The result now follows from Theorem 14.5 of [18].

We now establish the main convergence result.
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Proof of Theorem 5.9. Given x ∈ K, u ∈ PM
2 , ε ∈ [0, 1), define

Zε,u
1,x(t, r) =

∫
O
G(t, 0, r, q)x(q)dq

Zε,u
2,x(t, r) =

∫ t

0

∫
O
G(t, s, r, q)R(s, q,Xθ(ε),u

x (s, q))dqds

Zε,u
3,x(t, r) =

√
θ(ε)

∫ t

0

∫
O
G(t, s, r, q)F (s, q,Xθ(ε),u

x (s, q))B(dqds)

Zε,u
4,x(t, r) =

∫ t

0

∫
O
G(t, s, r, q)F (s, q,Xθ(ε),u

x (s, q))u(s, q)dqds.

We first show that each Zε,uε

i,xε is tight in C([0, T ] : Bα), for i = 1, 2, 3, 4. For i = 1 this follows from
part 2 of Assumption 5.2. Recalling that B

T
α∗ is compactly embedded in B

T
α for ᾱ > α∗ > α, it

suffices to show that for some α∗ ∈ (α, ᾱ)

sup
ε∈(0,1)

P

[
||Zε,uε

i,xε ||BT
α∗ > K

]
→ 0 as K → ∞ for i = 2, 3, 4. (5.17)

For i = 2, 4, (5.17) is an immediate consequence of

sup
ε∈(0,1)

E||Zε,uε

i,xε ||BT
α∗ <∞,

as follows from Lemma 5.11, the linear growth condition (5.8) and Lemma 5.10. For i = 3, in view
of Lemma 5.12, it suffices to establish

sup
ε∈(0,1)

E[Zε,uε

3,xε ]BT
α∗ <∞,

where for z ∈ B
T
α , [z]BT

α
= ||z||BT

α
− ||z||0. Once more, this follows as an immediate consequence of

Lemma 5.11, the linear growth condition (5.8) and Lemma 5.10.

Having shown tightness of Zε,uε

i,xε for i = 1, 2, 3, 4, we can extract a subsequence along which each
of these processes and X ε,uε

xε converges in distribution in C([0, T ] : Bα). Let Z0,u
i,x and X0,u

x denote
the respective limits. We will show that

Z0,u
1,x (t, r) =

∫
O
G(t, 0, r, q)x(q)dq

Z0,u
2,x (t, r) =

∫ t

0

∫
O
G(t, s, r, q)R(s, q,X0,u

x (s, q))dqds

Z0,u
3,x (t, r) = 0

Z0,u
4,x (t, r) =

∫ t

0

∫
O
G(t, s, r, q)F (s, q,X0,u

x (s, q))u(s, q)dqds. (5.18)

The uniqueness result Theorem 5.8 will then complete the proof.

Convergence for i = 1 follows from part 2 of Assumption 5.2. The case i = 3 follows from
Lemma 5.12, Lemma 5.10 and the linear growth condition. To deal with the cases i = 2, 4 we
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invoke the Skorokhod Representation Theorem [22], which allows us to assume with probability
one convergence for the purposes of identifying the limits. We give the proof of convergence only
for the harder case i = 4. Denote the right side of (5.18) by Ẑ

0,u
4,x(t, r). By the Cauchy-Schwarz

inequality, equation (5.9) and the uniform Lipschitz property of F ,∣∣∣Zε,uε

4,xε(t, r)− Ẑ0,u
4,x (t, r)

∣∣∣
≤

∫ t

0

∫
O
|G(t, s, r, q)|

∣∣∣F (s, q, X ε,uε

xε (s, q))− F (s, q, X0,u
x (s, q))

∣∣∣ |uε(s, q)|dqds

+
∣∣∣∣∫ t

0

∫
O
G(t, s, r, q)F (s, q,X0,u

x (s, q)) (uε(s, q)− u(s, q))dqds
∣∣∣∣ . (5.19)

For a suitable constant c ∈ (0,∞), the first term on the right side of (5.19) can be bounded above
by

√
M

[∫ t

0

∫
O
|G(t, s, r, q)|2

∣∣∣F (s, q, X ε,uε

xε (s, q))− F (s, q, X0,u
x (s, q))

∣∣∣2 dqds]1/2

≤ c

(
sup

(s,q)∈[0,T ]×O

∣∣∣X ε,uε

xε (s, q)−X0,u
x (s, q)

∣∣∣) ,
and thus converges to 0 as ε → 0. The second term in (5.19) converges to 0 as well, since uε → u
and ∫ t

0

∫
O

(
G(t, s, r, q)F (s, q,X0,u

x (s, q))
)2
dqds <∞.

By uniqueness of limits and noting that Ẑ0,u
4,x is a continuous random field, we see that Z0,u

4,x = Ẑ
0,u
4,x

and the proof is complete. �

6 Other Infinite Dimensional Models

The key ingredients in the proof of the LDP for the solution of the infinite dimensional SDE
studied in Section 5 are the qualitative properties in Theorems 5.8 and 5.9 of the controlled SDE
(5.3). Once these properties are verified, the LDP follows as an immediate consequence of Theorem
4.6. Furthermore, one finds that the estimates needed for the proof of Theorems 5.8 and 5.9 are
essentially the same as those needed for establishing unique solvability of (5.1). This is a common
theme that appears in all proofs of LDPs, for small noise stochastic dynamical systems, that are
based on variational representations such as in Section 3. Indeed, one can argue that the variational
representation approach makes the small noise large deviation analysis a transparent and a largely
straightforward exercise, once one has the estimates for the unique solvability of the stochastic
equation. This statement has been affirmed by several recent works on Freidlin-Wentzell large
deviations for infinite dimensional SDEs that are based on the variational representation approach
(specifically Theorem 3.1), and carry out the verification of statements analogous to Theorems 5.8
and 5.9. Some of these works are summarized below.
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6.1 SDEs driven by infinitely many Brownian motions

Ren and Zhang [24] consider a SDE driven by infinitely many Brownian motions with non-Lipschitz
diffusion coefficients. Prior results on strong existence and uniqueness of the solutions to the SDE
yield continuous (in time and initial condition) random field solutions. The authors prove a small
noise LDP in the space C([0, T ]×Rd). The proof relies on the representation formula for an infinite
sequence of real Brownian motions {βi} given in Theorem 3.1 and the general Laplace principle of
the form in Theorem 4.4. Non-Lipschitz coefficients make the standard discretization and approx-
imation approach intractable for this example. The authors verify the analogues of Theorems 5.8
and 5.9 in Theorems 3.1, Lemma 3.4 and Lemma 3.11 of the cited paper. In the final section of the
paper, Schilder’s theorem for Brownian motion on the group of homeomorphisms of the circle is
obtained. The proof here is also by verifying of steps analogous to Theorems 5.8 and 5.9 regarding
solvability and convergence in the space of homeomorphisms. Once more, exponential probability
estimates with the natural metric on the space of homeomorphisms, needed in the standard proofs
of the LDP, do not appear to be straightforward. Using similar ideas based on representations for
infinite dimensional Brownian motions, a LDP for flows of homeomorphisms, extending results of
the final section of [24] to multi-dimensional SDES with non-Lipschitz coefficients, has been studied
in [25].

6.2 Stochastic PDE with varying boundary conditions

Wang and Duan [28] study stochastic parabolic PDEs with rapidly varying random dynamical
boundary conditions. The formulation of the SPDE as an abstract stochastic evolution equation
in an appropriate Hilbert space leads to a non-Lipschitz nonlinearity with polynomial growth.
Deviations of the solution from the limiting effective system (as the parameter governing the rapid
component approaches its limit) are studied by establishing a large deviation principle. The proof
of the LDP uses the variational representation for functionals of a Hilbert space valued Wiener
process as in Theorem 3.2 and the general Laplace principle given in Theorem 4.2. Once more,
the hardest part in the analysis is establishing the wellposedness (i.e., existence, uniqueness) of the
stochastic evolution equation. Once estimates for existence/uniqueness are available, the proof of
the LDP becomes a straightforward verification of Assumption 4.1.

6.3 Stochastic Navier-Stokes equation

Sritharan and Sundar [27] study small noise large deviations for a two dimensional Navier-Stokes
equation in an (possibly) unbounded domain and with multiplicative noise. The equation can be
written as an abstract stochastic evolution equation in an appropriate function space. The solution
lies in the Polish space C([0, T ] : H)

⋂
L2([0, T ] : V ) for some Hilbert spaces H and V and can be

expressed as Gε(
√
εW ) for a H–valued Wiener process W . Authors prove existence and uniqueness

of solutions and then apply Theorem 4.2 by verifying Assumption 4.1 for their model.
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7 Appendix

Proof of Theorem 4.2. For the first part of the theorem we need to show that for all compact
subsets K of E0 and each M <∞,

ΛM,K
.=
⋃

x∈K

{f ∈ E : Ix(f) ≤M}

is a compact subset of E . To establish this we will show that ΛM,K equals to
⋂

n≥1 Γ2M+ 1
n

,K . In
view of Assumption 4.1, the compactness of ΛM,K will then follow. Let f ∈ ΛM,K. There exists
x ∈ K such that Ix(f) ≤ M . We can now find, for each n ≥ 1, un ∈ L2([0, T ] : H0) such that
f = G0

(
x,
∫ ·
0 un(s)ds

)
and 1

2

∫ T
0 ||un(s)||20ds ≤ M + 1

2n . In particular un ∈ S2M+ 1
n (H0), and so

f ∈ Γ2M+ 1
n

,K . Since n ≥ 1 is arbitrary, we have ΛM,K ⊆ ⋂
n≥1 Γ2M+ 1

n
,K . Conversely, suppose

f ∈ Γ2M+ 1
n

,K , for all n ≥ 1. Then, for every n ≥ 1, there exists xn ∈ K, un ∈ S2M+ 1
n such that

f = G0
(
xn,

∫ ·
0 un(s)ds

)
. In particular, we have infx∈K Ix(f) ≤ Ixn(f) ≤ M + 1

2n . Sending n → ∞
we see that infx∈K Ix(f) ≤M . Recalling that the map x 
→ Ix(f) is l.s.c. we now see that f ∈ ΛM,K

and the inclusion
⋂

n≥1 Γ2M+ 1
n

,K ⊆ ΛM,K follows. This proves the first part of the theorem.

For the second part of the theorem, consider an x ∈ E0 and let {xε > 0} ⊆ E0 be such that
xε → x as ε → 0. Fix a bounded and continuous function h : E → R. It suffices to show (2.1)
(upper bound) and (2.2) (lower bound), with Xε there replaced by Xε,xε

and I replaced by Ix. For
notational convenience we will write P2(H0),PN

2 (H0), SN(H0) simply as P2,PN
2 , S

N respectively.

Proof of the upper bound. From Theorem 3.2

−ε log E

[
exp

(
−1
ε
h(X ε,xε

)
)]

= inf
u∈P2

E

[
1
2

∫ T

0

||u(s)||20ds+ h ◦ Gε

(
xε,

√
εW +

∫ ·

0

u(s)ds
)]

.

(7.1)
Fix δ ∈ (0, 1). Then for every ε > 0 there exists uε ∈ P2 such that the right hand side of (7.1) is
bounded below by

E

[
1
2

∫ T

0
||uε(s)||20ds+ h ◦ Gε

(
xε,

√
εW +

∫ ·

0
uε(s)ds

)]
− δ.

Using the fact that h is bounded we can assume without loss of generality (we refer the reader to
the proof of Theorem 4.4 of [4] where a similar argument is used) that for some N ∈ (0,∞)

sup
ε>0

∫ T

0
||uε(s)||20ds ≤ N, a.s.

In order to prove the upper bound it suffices to show that

lim inf
ε→0

E

[
1
2

∫ T

0
||uε(s)||20ds+ h ◦ Gε

(
xε,

√
εW +

∫ ·

0
uε(s)ds

)]
≥ inf

f∈E
{Ix(f) + h(f)}.
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Pick a subsequence (relabeled by ε) along which uε converges in distribution to some u ∈ PN
2 (as

SN–valued random variables). We now infer from the Assumption 4.1 that

lim inf
ε→0

E

[
1
2

∫ T

0
||uε(s)||20ds+ h ◦ Gε

(
xε,

√
εW +

∫ ·

0
uε(s)ds

)]
≥ E

[
1
2

∫ T

0
||u(s)||20ds+ h ◦ G0

(
x,

∫ ·

0
u(s)ds

)]
≥ inf

{(f,u)∈E×L2([0,T ]:H0):f=G0(x,
∫ ·
0 u(s)ds)}

{
1
2

∫ T

0
||u(s)||20ds + h(f)

}
≥ inf

f∈E
{Ix(f) + h(f)}.

Proof of the lower bound. We need to show that

lim sup
ε→0

−ε log E

[
exp

(
−1
ε
h(X ε,xε

)
)]

≤ inf
f∈E

{Ix(f) + h(f)}.

Without loss of generality we can assume that inff∈E{Ix(f) + h(f)} <∞. Let δ > 0 be arbitrary,
and let f0 ∈ E be such that

Ix(f0) + h(f0) ≤ inf
f∈E

{Ix(f) + h(f)} +
δ

2
. (7.2)

Choose ũ ∈ L2([0, T ] : H0) such that:

1
2

∫ T

0
||ũ(s)||20ds ≤ Ix(f0) +

δ

2
and f0 = G0

(
x,

∫ ·

0
ũ(s)ds

)
. (7.3)

Then, from Theorem 3.2,

lim sup
ε→0

−ε log E

[
exp

(
−1
ε
h(X ε,xε

)
)]

= lim sup
ε→0

inf
u∈A

E

[
1
2

∫ T

0
||u(s)||20ds+ h ◦ Gε

(
xε,

√
εW +

∫ ·

0
u(s)ds

)]
≤ lim sup

ε→0
E

[
1
2

∫ T

0
||ũ(s)||20ds+ h ◦ Gε

(
xε,

√
εW +

∫ ·

0
ũ(s)ds

)]
=

1
2

∫ T

0
||ũ(s)||20ds+ lim sup

ε→0
E

[
h ◦ Gε

(
xε,

√
εW +

∫ ·

0
ũ(s)ds

)]
. (7.4)

By Assumption 4.1 limε→0 E

[
h ◦ Gε

(
xε,

√
εW +

∫ ·
0 ũ(s)ds

)]
= h

(G0(x,
∫ ·
0 ũ(s)ds)

)
= h(f0). Thus

in view of (7.2) and (7.3) the expression (7.4) can be at most inff∈E{I(f) + h(f)} + δ. Since δ is
arbitrary, the proof is complete. �

Proof of Theorem 4.4. From Remark 2.9 we can regard β as an H–valued Q–Wiener process,
where H = l̄2 and Q is a trace class operator, as defined in Remark 2.9. Also, one can check that
H0

.= Q1/2H = l2. Since the embedding map i : C([0, T ] : l̄2) → C([0, T ] : R
∞) is measurable

(in fact continuous), Ĝε : E0 × C([0, T ] : l̄2) → E defined as Ĝε(x,
√
εv) .= Gε(x,

√
εi(v)), (x, v) ∈
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E0 ×C([0, T ] : l̄2) is a measurable map for every ε ≥ 0. Note also that for ε > 0, Xε,x = Ĝε(x,
√
εβ)

a.s. Since Assumption 4.3 holds, we have that 1 and 2 of Assumption 4.1 are satisfied with Gε

there replaced by Ĝε for ε ≥ 0 and W replaced with β. Define Îx(f) by the right side of (4.3) with
G0 replaced by Ĝ0. Clearly Ix(f) = Îx(f) for all (x, f) ∈ E0 × E . The result is now an immediate
consequence of Theorem 4.2. �

Proof of Theorem 4.6. Let {φi}∞i=1 be a CONS in L2(O) and let

βi(t)
.=
∫

[0,t]×O
φi(x)B(dsdx), t ∈ [0, T ], i = 1, 2, · · · .

Then β ≡ {βi} is a sequence of independent standard real Brownian motions and can be regarded
as a (S, S)–valued random variable. Furthermore, (2.5) is satisfied and from Proposition 2.15, there
is a measurable map g : C([0, T ] : R

∞) → C([0, T ] × O : R) such that g(β) = B a.s. Define, for
ε > 0, Ĝε : E0 × C([0, T ] : R

∞) → E as Ĝε(x,
√
εv) .= Gε(x,

√
εg(v)), (x, v) ∈ E0 × C([0, T ] : R

∞).
Clearly Ĝε is a measurable map and Ĝε(x,

√
εβ) = Xε,x a.s. Next, note that

Sac
.=
{
v ∈ C([0, T ] : R

∞) : v(t) =
∫ t

0

û(s)ds, t ∈ [0, T ], for some û ∈ L2([0, T ] : l2)
}

is a measurable subset of S. For û ∈ L2([0, T ] : l2), define uû ∈ L2([0, T ]×O) as

uû(t, x) =
∞∑
i=1

ûi(t)φi(x), (t, x) ∈ [0, T ]×O.

Define Ĝ0 : E0 ×C([0, T ] : R∞) → E as

Ĝ0(x, v) .= G0(x, Int(uû)), if v =
∫ ·

0
û(s)ds, and û ∈ L2([0, T ] : l2).

We set Ĝ0(x, v) = 0 for all other (x, v). Note that{
Ĝ0

(
x,

∫ ·

0
û(s)ds

)
: û ∈ SM(l2), x ∈ K

}
=
{G0 (x, Int(u)) : u ∈ SM , x ∈ K

}
.

Since Assumption 4.5 holds, we have that 1 of Assumption 4.3 holds with G0 there replaced by Ĝ0.
Next, an application of Girsanov’s theorem gives that, for every ûε ∈ PM

2 (l2)

g

(
β +

1√
ε

∫ ·

0

ûε(s)ds
)

= B +
1√
ε
Int(uûε), a.s.

In particular for every M < ∞ and families {ûε} ⊂ PM
2 (l2) and {xε} ⊂ E0, such that ûε converges

in distribution (as SM(l2)–valued random elements) to û and xε → x, we have, as ε→ 0,

Ĝε

(
xε,

√
εβ +

∫ ·

0
ûε(s)ds

)
= Gε

(
xε,

√
εB + Int(uûε)

)
→ G0 (x, Int(uû))

= Ĝ0

(
x,

∫ ·

0

û(s)ds
)
.

Thus part 2 of Assumption 4.3 is satisfied with Gε replaced by Ĝε, ε ≥ 0. The result now follows
on noting that if Îx(f) is defined by the right side of (4.5) on replacing G0 there by Ĝ0, then
Îx(f) = Ix(f) for all (x, f) ∈ E0 × E . �
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